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Abstract-The problem treated here is that of an isotropic body having a doubly periodic rectangular or
triangular array of perfectly bonded circular elastic inclusions. The body is in tension or compression. This
simulates a composite material wherein a relatively weak matrix is reinforced by stronger (and more rigid)
fibers. Bond stresses for both rectangular and triangular arrays have been calculated using either boundary
point matching or boundary point least squares techniques. Numerical results based on a plane strain
analysis are given in graphical form.

INTRODUCTION

The potential use of fiber reinforced composites in developing light weight, high strength
engineering materials is well recognized. A great deal of current research, both analytical and
experimental, has been aimed at a better understanding of the mechanical behavior of these
materials.

An important consideration in the analysis of fiber reinforced materials is the nature and
magnitude of the bond stresses between the relatively rigid fibers and the flexible matrix. A
knowledge of these quantities is required for design purposes. Thus it is the purpose of the
present investigation to obtain results for one such problem, simulated as a body of isotropic
matrix material reinforced by a doubly periodic array of perfectly bonded circular elastic
inclusions (the fibers). In order to have as much generality as possible, the fibers are assumed to
be based either on a rectangular or an isosceles traingular array. A state of plane strain is
assumed throughout.

A few other investigations have been made on related problems. For example,
Fil'shtinskii[l] and Grigolyuk and Fil'shtinskii[2] treated similar problems to the ones discussed
here using a very complicated method which is most difficult to follow. They were mostly
concerned with obtaining effective Young's moduli although they did give a few results on bond
stresses.

Using point matching and point least squares methods, Wilson and Hill [3] have presented an
analysis of an infinite plate with a doubly periodic array of circular or elliptical holes or rigid
inclusions. Their results are only for rectangular arrays, which is the simplest configuration to
analyze.

The present more general analysis is based upon a complex variable formulation[4] in
conjunction with the point matching method[5-7] or the point least squares method [8]. In the
problems investigated, perfect bonding between fibers and matrix is assumed, the continuity
stress and displacement conditions occurring at the interfaces.

It should be mentioned that, in dealing with problems of the transverse properties of
reinforced concrete, the present analysis can also be applied. The matrix in reinforced concrete
is the concrete, and the fibers are the steel rods.

COMPLEX VARIABLE FORMULATION

When the complex variable method is applied to the plane theory of elasticity, the problem
of solving for the Airy stress function is one of determining two analytic functions, <I>(z) and
'I'(z)[4]. The displacements and stresses can then be expressed in the respective forms

and

2J.t(u + iv) = h¢(z) - z<l>(z) -ifJ(z) = 2J.t(vr + iV9) ei9

ax + a y = 2[lfl(z) + lfl(z)] = a r +a9

ay - ax + 2iTxy = 2[zlfl'(z) + 'IT(z)] = (a9 - a r +2iTr9r i29

a r - iTr9 = lfl(z) + <I>(z) - ei29 [zlfl'(z) + 'I'(z)]
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where
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<!>(z) == f<P(z) dz and ljJ(z) == f'I'(z) dz. (5)

Here u, v, ux , U v and Txv are displacement components and stress components respectively in
Cartesian coordinates, while Vr, Vo, U r, Uo and Tro are those in a polar coordinate system. Also J-t

is the shear modulus and h is equal to (3-4v) for plane strain, v being Poisson's ratio.
The doubly periodic arrays treated here can be classified into two typical configurations, as

shown in Fig. I, namely rectangular and triangular. The ratio between the moduli of elasticity
of the inclusion and the matrix is assumed to have any value. If the ratio is zero, we have the
case of a plate weakened by holes. If the ratio approaches infinity, then the plate is reinforced
by rigid inclusions.

Rectangular array Tflangular array

Fig. I. Plate with doubly periodic arrays of circular inclusions.

In this investigation, quantities with subscript I refer to the inclusion, and those with
subscript 2 refer to the matrix. By assuming that the plate is infinite, and the stresses at infinity
are applied along the coordinate axes, it follows by symmetry that u(z) == u(Zj == -u(-z),

v(z) == -v(z) == v(-z), u == 0 and Txv == 0 on x == 0, and v = 0 and Txy = 0 on y = O. We can then
analyze the problem by considering only a quarter of a unit element, as shown in Fig. I. with
appropriate complex functions for inclusion and matrix. We then write

( trl

<P,(z) = L akz2k-2. 'l'1(Z) = L akZ2k_2]
k~ I k~ 1

r t

<P2(z) = L hkz
2\ 'l'2(Z) = L hkZ 2k

k:=~-11 k=-s

(6)

where Uk, UL hk and hk are real constants and I, Ill, n, r, s. and t are arbitrary integers. It is
noted that <P, and '1', are analytic in the simply connected region Izi ~ R, while <P2 and '1'2 are
analytic in the doubly connected region Izi ~ R, Ixl ~ u, Iyl ~ h.

Because the inclusions are assumed to be perfectly bonded to the matrix. the stress
continuity condition across Izi = R requires that

(7)

Substitution of eqn (4) into eqn (7) yields

(<P(z) +<P(z) - ei20 [z<p'(z) + 'I'(z)]) , = (<P(z) +<P(z) - ei20 [z<p'(z) + 'I'(z)]h (8)

and with z = Re iO substituted into eqn (8) and by comparing the coefficients of the terms ei2kO
,

we obtain

2a,=2bo-R-
2
h'-, }

(I - 2k)Uk+' - R-2Uk == (1- 2k)bk+ R-4kh_k - R-2hk_l, k ~ I .

R4kak+l = (I +2k)b_ k+ R 4kbk - R 2h'-lk+ll. k ~ I

(9)
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Also, on Izl = R, the displacement continuity condition requires

it follows that

From eqns (9) and (II), we express bk in terms of bk in the forms

b'-, = S,bo }

b'-(k+1) = RZ(I +2k)b_k+ SZR 4k+zbb k ~ 1

bk-, = RZ(I_ 2k)bk+ S3Rz-4kb_b k ~ 1

where
S, = 2Rz[(h, -I)ILZ, - (h z- I)]

2+(h, - I)lLz,

S - ILz,h] - hz
Z- J..tz1h l + 1
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(10)

(II)

(12)

(13)

The problem can then be solved if the values of bk are determined.
To compute for this set of unknowns bk , k = -q, p, where q and p are arbitrarily chosen

depending on the accuracy required, the boundary conditions must be applied. Then either the
point matching or the point least squares method can be used to solve for the values of bk•

From eqns (1)-(3) and the approximate forms for <l>z and 'l'z, we express lTxh, lTy)z, Txyh, Uz
and Vz in terms of bk in the forms

p

Txy h=lm[z<l>2+'I'z]= L Dkbk
k~-q

p

lTxh = Re[<I>z +<l>z - Z<l>2 - 'l'z] = L Ekbk
k~-q

p

lTyh = Re[<I>z +<l>z + Z<l>2 + 'l'z] = L Fkbk
k=-q

p

2J..tuz= Re[hzcPz - z<l>z -lfiz] = L Gkbk
k=-q

- p

2J..tvz = 1m [hzcPz - z<l>z -lfiz] = L Hkbk
k=-q

(14)

where
Dk = Im{S,z-Z}, k = 0

Im{DCld, -q ~ k ~-I

Im{DC2k}, 1~ k ~ P

Ek = Re{2 - SIZ-Z}, k = 0

Re{2zZk - DCld, -q ~ k ~ -I

Re{2zZk - DC2d, 1~ k ~ P

Fk = Re{2 + S]z-Z}, k = 0

Re{2zZk +DCld, -q ~ k ~-I

Re{2zZk + DC2k}, 1~ k ~ p

Gk = Re{hzz - z +S,z-'}, k = 0

Re{GCld, -q ~ k ~-I

Re{GC2d, 1~ k ~ P

Hk = Im{hzz - z + S,Z-I}, k = 0

Im{GCld, -q ~ k ~-I

Im{GC2k}, 1~ k ~ p

(15)
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and where
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-
DCl

k
= 2kZzZk - 1+ S3RZ(Zk+I)Z-(Zk+Z) - R Z(2k - I)zZk-Z

DC2k = 2kizZk - 1 + SZRZ(Zk+I)Z -(Zk+Z) - RZ(2k _ I)ZZk-Z

GCI =~ ZZk+l_ ziZk + RZiZk - 1+~ R Z(Zk+1)Z-(Zk+l)
k 2k + I 2k + I

GC2 =~ ZZk+l_ ziZk + RZiZk - 1+~ R Z(Zk+1)i-(Zk+l)
k 2k + I 2k + I

(16)

The boundary conditions are now applied using either the point matching or the point least
squares method to the rectangular and triangular arrays, separately.

I. Rectangular array
Consider the first quadrant of a unit element, as illustrated in Fig. 2(a).

rI"----------lcB

b

1. .
I------ a ------l x

(0)

N +1 N,

2

t

(bl

Fig. 2. Typical element in rectangular array.

Boundary conditions.

Txy = 0 on AB and BC}

onAB

onBC

(17)

where d l and dz are the constants to be determined such that the average stress on AB is (Jx~

and that on BC is (Jyoo.

Point matching method. This method requires that the boundary conditions be satisfied
exactly at the n boundary points shown in Fig. 2(b). It follows from eqns (17) that

f Dk(zj)bk = 0, 2sisN-l
k=-q

p

~ Gk(zj)bk = dj, 1sis N 1 (18)

and
k=-q

f Hk(zj)bk = dz, N 1sjsN
k=-q

It is clear that the number of unknown coefficients p + q + I must be equal to the number of
algebraic equation 2n - 1.

The procedures to solve for bk, k = -q, p, from Ref. [3], can be described as follows. Let
bkl denote the solution for d\ = 1 and dz= 0, and those for d\ = 0 and dz = 1 be denoted bkr

Also, let Uxool and U yoo\ denote the average normal stresses on AB and BC respectively with
respect to the solution bk" and those with respect to bk2 be U xoo2 and (Jyoo2. Then, by super­
position, we obtain the solution bk for any specified values of (Jxoo and U yoo•

(19)
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Point least squares method. Unlike the point matching method, this method does not require
that the boundary conditions be exactly satisfied at the n selected points. Instead, it minimizes
the squares of errors in satisfying the boundary conditions at those points. That is, we minimize
the function

(20)

Usually, as is done here, the values of A are set equal to unity. Then, during minimization of U,
we obtain a set of algebraic equations

k~q [~I Dk(zj)Dj(z;) +~ Gk(Zj)G/zj ) +j~, Hk(zj)Hj(zj) ]bk

N N

=~dtGj(zj)+ L d2H j(zj), -q:5j:5p (21)
i=1 i=N1

from which bk, k = -q, p, can be solved by following the same superposition procedures as
previously described. In this method, (p + q + I) does not have to be equal to (2n - I).

2. Triangular array
To avoid introducing functions other than <1>2 and '1'2 in the computation, we consider the

problem with a repeating element ABCDEF, as shown in Fig. 3(a).

2

1

c-----i

I :
'8

._.L.
IE,,,

~~- - I!:.F~=:::;fA'--"x
1+-0 - .1

2

(0) (b)

Fig. 3. Typical element in triangular array.

Boundary conditions. By the symmetry of the problem, it is required to apply the following
necessary and sufficient conditions

Txy, ax and a y on AB = Txy, ax and a y on DE, respectively,
at the corresponding points

Txy, ax and a y on FA = Txy, ax and a y on CD, respectively,
at the corresponding points

(22)
Txy, ax and a y on BC = Txy, ax and a y on EF, respectively,

at the corresponding points

u =d1onAB

v = d2 0n CD

where d l and d2 are determined such that the average normal stress on line 1-1 is axoo , and that
on line 2 - 2 is ayoo.

Point matching method. With the configuration shown in Fig. 3(b), and corresponding to the
boundary conditions given above, the point matching method yields the equations
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p p

L Dk(Zj)bk = L Dk(Zi+N)bb 2::0; j::o; N,
k~-q k~-q

p p

L Ek(zj)bk = L Ek(zj+N,)bk, 1::0; j::o; N 1
k~-q k~-q

p p

L Fk(zj)bk = L Fk(Zi+N)bk, 1::0; j::o; N 1
k--q k=-q

p p

L Dk(zj )bk = L Dk(Zj+N)bb N2 + 1 ::0; j ::0; N3 - 1
k~-q k=-q

p p

L Edzi)bk = L Ek(Zi+N2J )bb
k~-q k~-q

I' I'

L Fdz;)bk = L Fk(Zj+N21 )bb
k--q k~-q

(23)

I' P

L Dk(zj)bk = L Dk(Zi+N45 )bk, N4 + 1 ::0; j::o; Ns
k~-q k~-q

p p

L Ek(zj)bk = L Ek(zj+N4S)bb N4 + 1 ::0; i ::0; Ns
k~-q k--q

p p

L Fk(z;)bk = L Fk(Zi+N4S )bk, N4 + 1 ::0; j ::0; N s
k=-q k~-q

p

L Gk(Zi)bk = dJ,
k~-q

I'

L Hk(z;)bk = d2,
k=-q

where N23 = N3 - N2 and N4S = Ns - N4• This yields 4N] +4N23 + 3N4S - 4 equations. By using
the same procedure as that described in problem 1, except that the average normal stresses are
now taken along the lines 1-1 and 2-2, we can then obtain the solution bk from eqn (19).

Point least squares method. With all the A'S placed equal to unity, and after minimization of
the squares of the errors, we obtain

P N 1

k~q{~ (Dk(zj)[Dj(z;) - Dj(Zi+N)] + Dk(zj+N)[Dj(zj+N) - Dj(zj)])

N,

+L (Ek(zj)[Ej(zj) - Ej(Zi+N)] + Ek(zj+N)[E/zj+N) - Ej(z;)])
i= I

N1

+L (Fk(Zi)[Fj(Zi) - Fj(Zi+N)] + Fk(Zi+N)[Fj(Zj+N) - Fj(z;)])
i=l

N1-1

+ L (Dk(z;)[Dj(z;) - Dj(Zi+N)] + Dk(zj+N21)[Dj(zj+N) - Dj(zj)])
j=N~+1

N 1-'

+ L (Ek(zj)[Ej(zj) - Ej(Zj+N21 )] + Ek(Zi+N21)[Ej(Zi+N21) - Ej(z;)])
i=N~+l

N 1-1

+ L (Fk(Zj)[Fj(Zj) - Fj(Zj+N21)] + Fk(zj+N2J )[Fj(Zj+N21) - Fj(z;)])
j=N~+1

N,

+ L (Dk(z;)[Dj(z;) - Dj (Zi+N4S )] + Dk(Zi+N4)[D/zj+N4S) - Dj(zj)])
i=N4+1

Ns

+ L (Ek(Zi )[Ej(Zi) - Ej(Zi+N4)] + Ek(Zj+N4S)[Ej(zj+ N4) - Ej(zj)])
i=N4+1

N,

+ L (Fk(Z;)[Fj(Zj) - Gj(Zj+N4)] + Fk(zj+N45)[Fj(Zi+N4) - Fj(z;)])
i=N4+1

N] N 4 } N 1 N 4

+ ~ (Gk(Z;)Gj(Zj))+j=~+1 (Hk(zj)Hj(Zi)) bk = ~ dIGj(Zj) + j=~+1 d2H j(zj), -q ::o;j::o;p

(24)
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NUMERICAL RESULTS

Some numerical results are presented for both rectangular and triangular arrays in graphical
form. The results are obtained for the case of plane strain, and the Poisson's ratios for both
matrix and inclusion (fiber) are assumed to be OJ. Also, the stresses at infinity, Uxoo and U yoo , are
set equal to 1 and 0 respectively.

To examine the influence on the bond stresses due to the spacing of inclusions, the results
are illustrated in Figs. 4-7 for two square arrays with different values of aiR. In Figs. 8 and 9,
bond stresses are evaluated for a regular triangular array (bla = 1.732).
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Fig. 4. Normal bond stress on a square array
(R = I. a = b = 1.7).

Fig, 5. Matrix tangential bond stress on a square array
(R = I. a = b = 1.7).
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Fig. 7, Matrix tangential bond stress on a square array
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Fig. 9. \1atrix tangential bond stress on a triangular array
IR = OJ, a ~ I. h = 1.7m.
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CONCLUSIONS

Both the point matching method and the point least squares method gave very good results,
Since the former method usually requires more terms in <I> and 'I' than the latter does, thus,
when the number of boundary points becomes large, it is better to use the point least squares
method with less unknown coefficients,

Also, to prevent overflow or underflow in solving for a large system of linear algebraic
equations, it is possible to adjust the integers p and q, as a result of experience, and then divide
both right hand side and left hand side of the equations by an optimum number, which may be
chosen as the square root of the first term in one of the equations.

Some of the cases presented in this paper have also been solved by the finite element
method and the corresponding results agree very well. However, the computing expt'nse is far
lower in the present analysis. The finite element method provides a lower bound solution, that
is, under a given load, the approximate plate behaves stiffer than the actual plate does, and the
approximate displacement solution bounds the exact solution from below.

For the case of a plate weakened by holes, when the values of both aIR and blR are greater
than 3, the present analysis shows that the problem can be treated as one of an infinite plate
weakened by a single hole. That is, the holes do not interfere stresswise with one another. This
analysis also indicates that when the value of Ed E2 is less than 0.05, the existence of the presence
of the fibers can be ignored. Finally, when the value of Ed E2 is greater than 20, the fibers can be
considered rigid.

For arbitrarily shaped inclusions, the present analysis must be accompanied by conformal
mapping techniques. With appropriate mapping functions, which transform the inside and
outside of a circle to the inside and outside of the required shape, we can then obtain the
solution for a plate with a doubly periodic array of arbitrarily shaped inclusions.
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